Showing posts with label diet. Show all posts
Showing posts with label diet. Show all posts

Friday, June 28, 2013

I Know What You Ate This Summer

Despite active foodstagramming and foodteresting, and eagerness to show pictures of meals and diet reports to friends on social media, we don't really want others to know everything we eat. But they might know anyway.

Why worry about NSA, when Google, Facebook, Amazon and many others know what we might be eating. Cameras record our ways to groceries and restaurants, credit cards record our purchases, food chains know our weaknesses, clothes shops know how, as a result, our pant sizes change over time. One day phones will know what we ate too.  As both short- and long-term diets change our breath-prints - creating signature metabolites in exhaled breath.

A recent Dutch study actually looked at what gluten-free eating does to our breath. Just 4 week of dieting lead to remarkable - though reversible -  differences. (As detected in 20 healthy individuals by gas chromatography coupled with mass spectrometry (TD-GC-tof-MS) in combination with chemometric analysis ). A set of twelve volatile compounds that distinguish gluten-free eaters along with information from Aurametrix knowledgebase is listed in the table below.


Compound Odor Notes
2-butanol strong alcoholic 1-Butanol smells like permanent marker (Sharpie) 
octane Gasoline-like, car exhaust octyl chloride smells faintly of oranges
2-propyl-1 pentanol green banana 1-Pentanol smells like paint thinner 
nonanal strong fruity or floral attracts mosquitoes
dihydro-4-methyl-2(3H)-furanone strong coconut aroma 5-butyl-4-methyloxolan-2-one is known as "whisky lactone"
nonanoic acid rancid beer, old cooking oil armpits of males over 30
dodecanal Soapy, waxy, aldehydic, citrus, orange rindy with floral nuances Pure, synthetic qualities of this fatty aldehyde are used in traces in perfumery for "fresh laundry"-like effects.


Reference
Baranska A, Tigchelaar E, Smolinska A, Dallinga JW, Moonen EJ, Dekens JA, Wijmenga C, Zhernakova A, & van Schooten FJ (2013). Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. Journal of breath research, 7 (3) PMID: 23774130

Tuesday, January 10, 2012

Studying body odor: one step at a time

Unpleasant body odors could be a sign of a disease. But even when the cause of the disease is known - an example is trimethylaminuria or TMAU - there are no one-size-fits-all solutions. Elimination of choline and other essential nutrients from diet can be harmful and unhelpful.  Everyone has their own unique needs, with individual combinations of foods, activities and optimal environmental conditions.

An earlier survey of about 100 body odor and halitosis sufferers indicated stress (34%), food (25%) and environment, including the weather and perfumed products (15%) as main triggers of odors. 23% of sufferers did not know what the trigger was.

Our study seems to have less unknowns. As you see from the picture, 60% of participants have both body odor and halitosis. Only 22% of participants were diagnosed with TMAU, one third has IBS, one third has environmental sensitivities (mostly pollen and mold allergies, but some have dust mite and pet allergies and chemical sensitivities). Over 60% of participants reported sensitivities to specific foods. Most frequent was lactose sensitivity.

It is known that a specific diet, infections and diseases have major impact on variations in human body odor.  Some of our early results on fatty and ammonia types of odors identified a few food ingredients and their maldigestion as potential causes. Our next posts on musty and smoky odors, as well as unpleasant odors in general will tell more.

e-mail to
 for more information

And stay tuned for results!

REFERENCES
Jan Havlicek, & Pavlina Lenochova (2008). Environmental effects on human body odour Chemical Signals in Vertebrates DOI: 10.1007/978-0-387-73945-8_19

Havlicek, J., & Lenochova, P. (2006). The Effect of Meat Consumption on Body Odor Attractiveness Chemical Senses, 31 (8), 747-752 DOI: 10.1093/chemse/bjl017

Moshkin M, Litvinova N, Litvinova EA, Bedareva A, Lutsyuk A, Gerlinskaya L. Scent Recognition of Infected Status in Humans. J Sex Med. 2011 Dec 6. doi: 10.1111/j.1743-6109.2011.02562.x.

Saturday, November 5, 2011

What's that fatty odor?

Body odor is closely associated with diet. Deciphering the chemistry of human odor is not an easy task - only about 5% of odorous molecules are usually recovered from collection containers, and not all of the molecules are identified in complex spectra. Volatile fatty acids, alcohols, and aromatic ring compounds comprise a substantial fraction of smelly molecules, yet very little is known about the origin and factors controlling their production in humans. Fortunately for some (and not so fortunately for others), the human nose can capture and discriminate many smell signatures. Could this discrimination be used to connect the dots between diet and body odor? MEBO Research has just started an anonymous study using the Aurametrix health analysis tool to find out.

Aurametrix's knowledge base provides a wide selection of foods and symptoms, including different types of odors recognizable by the human nose. Participants in the study have been recording some of their food intake and activities on days when their symptoms are better or worse than average, entering items they suspect might be contributing to or alleviating their body odor on those days. The tool's analysis engine then lets them explore all the possible cause-effect relationships. In addition, Aurametrix performs automated analyses across the entire user community and displays cumulative results as "aggregate correlations." The figure on the right is an excerpt from these results.

Although the study has only just begun, the preliminary results already look very interesting. One example is fatty odor. Aurametrix linked several dietary chemicals to unpleasant "fatty odor" emanating from skin based on Aura entries of several participants. The top chemicals so far are:  Vitamin K1 (phylloquinone), Octadecanoic acid, FODMAPs, Beta-carotene,  Carbohydrates and Monosaccharides. Another interesting result (although there were fewer observations) is that Vitamin B12 obtained from diet seemed to help prevent fatty body odor.
  • Could Vitamin K1 really contribute to "fatty" odor?  Could 6 observations derived from different users' Auras be just a coincidence? Vitamin K is proposed to increase production of alkaline phosphatase in intestines. This enzyme produces a number of different substances, some of which have a peculiar sweetish smell.  Chlorophyll, usually recommended to combat body odor and supposedly makes odor "sweeter," is an excellent source of vitamin K1. And so is Asparagus that gives urine a disagreeable odor.
  • Octadecanoic (Stearic) acid was also linked to fatty odor in 6 observations. This saturated fatty acid is most abundant in animal fats and cocoa butter, and also in nuts and seeds (peanuts, flax), cheese, cookies and candies. Its smell is fairly mild, yet can be detected by the human nose (Bolton and Halpern, 2010). Besides, it slowly converts in the liver to heart-healthy oleic acid which has a faintly fatty odor with a hint of dead insects. It could also metabolize into other compounds and incorporate into liver lipids or follow alternative routes.
  • FODMAPs, highly fermentable but poorly absorbed short-chain carbohydrates and polyols, were found to be an important dietary factor contributing to gastrointestinal symptoms. Perhaps FODMAPs, carbohydrates and monosacharides in particular could also contribute to odor in the absence of GI discomfort?
  • Beta-carotene is another heart-healthy chemical with anticancerous properties important in human nutrition as a source of Vitamin A. Tobacco, tea, many spices and flowers owe their flavors to chemicals metabolized from beta-carotene. One of such chemicals is warm and woody beta-Ionone that smells of blackberry at lower concentrations and fatty-cheesy at higher concentrations.

The chemistry of odors and their origins is undoubtedly very complex. Yet, these preliminary results show that together we may find the answers to many health-related questions. With more participants, we'll soon connect the dots between diet and body odor. Want to participate? Write to:



References

Bolton B, & Halpern BP (2010). Orthonasal and retronasal but not oral-cavity-only discrimination of vapor-phase fatty acids. Chemical senses, 35 (3), 229-38 PMID: 20100787

Dunkel M, Schmidt U, Struck S, Berger L, Gruening B, Hossbach J, Jaeger IS, Effmert U, Piechulla B, Eriksson R, Knudsen J, & Preissner R (2009). SuperScent--a database of flavors and scents. Nucleic acids research, 37 (Database issue) PMID: 18931377