Despite being the overlooked Cinderella of our senses, the impact of smell on our well-being is profound.
Friday, March 31, 2017
Giving the underserved the care they deserve
Sunday, June 12, 2016
Seeing Through the Skin
by AURAMETRIX
REFERENCES
Andreoni G, Standoli CE, & Perego P (2016). Defining Requirements and Related Methods for Designing Sensorized Garments. Sensors (Basel, Switzerland), 16 (6) PMID: 27240361
Gao W, Emaminejad S, Nyein HY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, & Javey A (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529 (7587), 509-14 PMID: 26819044
Imani S, Bandodkar AJ, Mohan AM, Kumar R, Yu S, Wang J, & Mercier PP (2016). A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nature communications, 7 PMID: 27212140
Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, & Kim DH (2016). A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature nanotechnology, 11 (6), 566-72 PMID: 26999482
Panneer Selvam A, Muthukumar S, Kamakoti V, & Prasad S (2016). A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat. Scientific reports, 6 PMID: 26996103
XXX
Yokota T, Zalar P, Kaltenbrunner M, Jinno H, Matsuhisa N, Kitanosako H, Tachibana Y, Yukita W, Koizumi M, & Someya T (2016). Ultraflexible organic photonic skin. Science advances, 2 (4) PMID: 27152354
Human skin emits light (albeit the glow is extremely weak) and a wide variety of small molecules that may be sometimes "sniffed" by dogs or even other humans. These chemicals tell a story about our health and wellness, things we eat and drink, touch and breathe. Mosquitoes use such emissions to assess our "attractiveness" from indicators such as Indoles (unpleasantly smelling but healthy "inner soil" biomarker) or carbon dioxide (amount of which correlates with the size of the person producing it) in the air.
Halo Wearables will launch their non-invasive hydration monitoring wearable in early 2016. It is tailored specifically for elite athletes. Halo's optical sensors track sodium and potassium levels in the user's blood. Researchers from the University of California, Berkeley, Stanford and Lawrence Berkeley National Laboratory have also developed a wearable sensor that can monitor sodium, potassium and lactate levels in sweat. A paper with their findings was published in Nature earlier this year. Startup Xsensio, accepted this year in Mass Challenge accelerator, works on “intelligent stamps” the size of a credit card (Lab-on-Skin wearables) including a unique low-power sensor for sweat analysis. ECHO smart patch from Kenzen aims to "silently follow your health and notify you only when it's most important". It analyzes sodium and potassium in sweat to monitor hydration, lactic acid and glucose analysis energy expenditure. A team from Seoul National University, University of Texas and a Massachusetts-based company MC10 are developing a flexible patch that senses glucose in people with diabetes and administers drugs, all in a single device. And there may be easier ways to display all the information collected from various sensors - perhaps even directly on the body - as the team from the University of Tokyo demonstrated with device measuring oxygen saturation levels in blood. |
Human skin is a super-highway of many small molecules reflecting our health and wellbeing. Various devices capable of "seeing" through our skin were announced in the past several years. Some of them - like AIRO watch claiming to detect metabolites in your bloodstream as they are released during and after meals - turned out to be vaporware. The jury is still out on many others like HealbeGobe. And the remaining ones are still in prototyping stages.
REFERENCES
Andreoni G, Standoli CE, & Perego P (2016). Defining Requirements and Related Methods for Designing Sensorized Garments. Sensors (Basel, Switzerland), 16 (6) PMID: 27240361
Gao W, Emaminejad S, Nyein HY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, & Javey A (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529 (7587), 509-14 PMID: 26819044
Panneer Selvam A, Muthukumar S, Kamakoti V, & Prasad S (2016). A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat. Scientific reports, 6 PMID: 26996103
XXX
Wednesday, March 25, 2015
The Smell of Stress and Fear
Can we recognize if people around us are stressed, anxious or fearful without observing their facial expressions, body language and actions or hearing their voice and messages? Can we understand if we are stressed ourselves without assessing our heart rate, blood pressure, noticing dry throat, sweating, drops or surges in energy? Yes, we can - by using our nose - as humans, too, recognize and transmit their emotions through chemical senses.
When we are stressed or panic we become more sensitive to odors (Buróna et al., 2015), ranking neutral odors as unpleasant (Krusemark et al, 2013). Chronic stress will actually dull the senses (Yuan & Slotnick, 2013), but that's another story.
When other people are stressed, we can feel it without seeing or hearing them. Numerous experiments showed that we can recognize emotions from sweat alone. We might not be able to tell why, but experience sympathy by smelling odors of those taking exams vs just exercising on a bike (Prehn-Kristensen et al 2009), become more cooperative when smelling hard work, more submissive when detecting that other people's health status prioritizes their needs, more fearful when detecting chemical clues coming from people watching horror movies (Zhou and Chen, 2009, de Groot et al., 2012) and exhibit risk taking behavior when detecting other people's anxieties (Haegler et al, 2010).
When we are stressed or panic we become more sensitive to odors (Buróna et al., 2015), ranking neutral odors as unpleasant (Krusemark et al, 2013). Chronic stress will actually dull the senses (Yuan & Slotnick, 2013), but that's another story.
When other people are stressed, we can feel it without seeing or hearing them. Numerous experiments showed that we can recognize emotions from sweat alone. We might not be able to tell why, but experience sympathy by smelling odors of those taking exams vs just exercising on a bike (Prehn-Kristensen et al 2009), become more cooperative when smelling hard work, more submissive when detecting that other people's health status prioritizes their needs, more fearful when detecting chemical clues coming from people watching horror movies (Zhou and Chen, 2009, de Groot et al., 2012) and exhibit risk taking behavior when detecting other people's anxieties (Haegler et al, 2010).
What is the exact chemistry of stress, anxiety and fear? We are getting close to deciphering it. Stress, for example, might be recognized by six biomarkers, including indole and 2-methyl-pentadecane (Turner et al, 2013) that are also indicators of COPD (Martinez-Lozano Sinues et al, 2014) and heart disease.
Correlating chemicals to health and wellness conditions is not easy. Acetone in breath, for example, has attracted the interest of clinical researchers for more than 60 years. Several dozen independent studies using various techniques and methods showed that much more complex analysis is required with long-term measurements of various health and environmental indicators including diet, treatments and prior medical history (Dowlaty, Yoon, and Galassetti, 2013). Aurametrix provides an integrated platform for such analysis, but until we sift through all the data, if you are stressed out, just take a deep breath and relax. Inhale confidence, exhale doubt.
REFERENCES
Haegler, K., Zernecke, R., Kleemann, A., Albrecht, J., Pollatos, O., Brückmann, H., & Wiesmann, M. (2010). No fear no risk! Human risk behavior is affected by chemosensory anxiety signals Neuropsychologia, 48 (13), 3901-3908 DOI: 10.1016/j.neuropsychologia.2010.09.019
Prehn-Kristensen A, Wiesner C, Bergmann TO, Wolff S, Jansen O, Mehdorn HM, Ferstl R, & Pause BM (2009). Induction of empathy by the smell of anxiety. PloS one, 4 (6) PMID: 19551135
Dowlaty N, Yoon A, & Galassetti P (2013). Monitoring states of altered carbohydrate metabolism via breath analysis: are times ripe for transition from potential to reality? Current opinion in clinical nutrition and metabolic care, 16 (4), 466-72 PMID: 23739629
de Groot JH, Smeets MA, Kaldewaij A, Duijndam MJ, & Semin GR (2012). Chemosignals communicate human emotions. Psychological science, 23 (11), 1417-24 PMID: 23019141
Krusemark EA, Novak L, Gitelman D, Li W. (2013) When the sense of smell meets emotion: Anxiety-state-dependent olfactory processing and neural circuitry adaptation. Journal of Neuroscience. 33(39):15324 –15332.
Martinez-Lozano Sinues P, Meier L, Berchtold C, Ivanov M, Sievi N, Camen G, Kohler M, Zenobi R
Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
Respiration; International Review of Thoracic Diseases [2014, 87(4):301-310] PMID: 25545545
Yuan TF, Slotnick BM. Roles of olfactory system dysfunction in depression. (2014) Prog Neuropsychopharmacol Biol Psychiatry. 54:26-30. doi: 10.1016/j.pnpbp.2014.05.013.
Labels:
anxiety,
Aurametrix,
Breath,
chemical signaling,
emotions,
fear,
Smell,
Stress,
Volatile Compounds
Saturday, September 7, 2013
Body Odor and Skin Bacteria
Our bodies are rainforests of microbes feeding off the leftovers from our meals and contributing to a variety of body odors.
Human skin is inhabited and re-populated depending on health conditions, age, genetics, diet, the weather and climate zones, occupations, cosmetics, soaps, hygienic products and moisturizers. All these factors contribute to the variation in the types of microbes. Population of viruses, for example, can include a mixture of good ones - like bacteriophages fighting acne-causing Propionibacterium - and bad ones - as highly contagious Mesles. Bacterial communities include thousands of species of Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, and fungi Malassezia.
The major odor-causing substances are sulphanyl alkanols, steroid derivatives and short volatile branched-chain fatty acids.
Another set of molecules produced by Corinebacterium are most prominent in Caucasian men and some Asians. The odor is hircine - resembling of goats with fatty and cheesy notes or cumin-spice like. The food sources contributing to this odor are proteins and animal fats.
Human skin is inhabited and re-populated depending on health conditions, age, genetics, diet, the weather and climate zones, occupations, cosmetics, soaps, hygienic products and moisturizers. All these factors contribute to the variation in the types of microbes. Population of viruses, for example, can include a mixture of good ones - like bacteriophages fighting acne-causing Propionibacterium - and bad ones - as highly contagious Mesles. Bacterial communities include thousands of species of Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, and fungi Malassezia.
Nat Rev Microbiol. 2011 April; 9(4): 244–253. |
Nat Rev Microbiol. 2011 April; 9(4): 244–253. |
These microbes form communities and have active social lives, cooperating to our good and bad experiences. They converse chemically - in many specific dialects and in universal Esperanto-like languages some of which even we could listen to - by sampling and understanding smells.
Humans are among the smelliest animals. And very capable in telling smells apart, even if the only difference in two molecules is that their structures are mirror images of one another. But unlike dogs that appreciate a garbage bin as much as we appreciate the smell of fresh flowers, we don't properly interpret smells and like to complain about body odors. As we don't know all that much about chemical nature of our surroundings and rely on context and psychological factors, like feeling an intrusion in our experiences of the world.
Maybe we have something to learn from the science of smells?
In a recent review of axillary microbiota, German researchers gave a good lesson in organic chemistry, listing major chemicals, enzymes and microbes responsible for body odor. Let's take a look.
As was also shown in previous studies, Staphylococcus and Corynebacterium spp. are the most abundant organisms colonizing moist areas and emitting chicken-sulfury, onion-like and clary-sage like odors. The strain of Staphylococcus haemolyticus is producing some of the most offensive sulfury smells. Corynebacterium jeikeium K411 is another species that can compete on the strength of the odor.
Most common sulphanyl alkanol in human sweat, 3-methyl-3-sulfanylhexan-1-ol is produced by bacteria in several ways, particularly in glutathione biodetoxification pathway, from molecules synthesized after consuming proteins (due to aminoacids L-cysteine, L-glutamic acid and glycin). This chemical,
besides being a major descriptor of human sweat odor, is also present in beers. Its S-enantiomer (75%) is described as a classical body odor (sweat) with onion-like tones. Interestingly, the opposite enantiomer, (R)-3-methyl-3-sulfanylhexan-1-ol, is fruity and grapefruit-like.
Another set of molecules produced by Corinebacterium are most prominent in Caucasian men and some Asians. The odor is hircine - resembling of goats with fatty and cheesy notes or cumin-spice like. The food sources contributing to this odor are proteins and animal fats.
Pheromones androstenol and androstenone, metabolites of sexual hormones, are also odorous. The latter is especially interesting as to some of us it smells like vanilla while to others is smells like urine.
Sweaty-feet and cheesy smelling isovaleric and propionic acids and sour-vinegary acetic acid are also adding to the spectrum of human odors. They can smell different to different people too - some people have genetic makeup making them hypersensitive to these smells, but others are much more tolerant and forgiving. The food sources of sourish smells are protein-rich. Lactic acid is found in cheeses, yogurt, soy sauce, sourdough, meats and pickled vegetables. It can be also produced from the breakdown of carbohydrates during exercise and used as additional fuel. Glycerol is created from triglycerides found in fats and oils.
So next time you are exposed to body odor, try to understand what could be causing it. It is not easy as it is a combination of many factors such as hormonal fluctuations, mental or physical stress, metabolism and microbes. It could be perfectly normal or result from a medical condition of the person who has the smell and your own olfactory abilities. But the smells are fascinating clues to health and the basics can be learned by most everyone.
Sweaty-feet and cheesy smelling isovaleric and propionic acids and sour-vinegary acetic acid are also adding to the spectrum of human odors. They can smell different to different people too - some people have genetic makeup making them hypersensitive to these smells, but others are much more tolerant and forgiving. The food sources of sourish smells are protein-rich. Lactic acid is found in cheeses, yogurt, soy sauce, sourdough, meats and pickled vegetables. It can be also produced from the breakdown of carbohydrates during exercise and used as additional fuel. Glycerol is created from triglycerides found in fats and oils.
So next time you are exposed to body odor, try to understand what could be causing it. It is not easy as it is a combination of many factors such as hormonal fluctuations, mental or physical stress, metabolism and microbes. It could be perfectly normal or result from a medical condition of the person who has the smell and your own olfactory abilities. But the smells are fascinating clues to health and the basics can be learned by most everyone.
REFERENCES
Fredrich E, Barzantny H, Brune I, & Tauch A (2013). Daily battle against body odor: towards the activity of the axillary microbiota. Trends in microbiology, 21 (6), 305-12 PMID: 23566668
Grice EA, & Segre JA (2012). The human microbiome: our second genome. Annual review of genomics and human genetics, 13, 151-70 PMID: 22703178
Stevenson, R., & Repacholi, B. (2005). Does the source of an interpersonal odour affect disgust? A disease risk model and its alternatives. European Journal of Social Psychology, 35 (3), 375-401 DOI: 10.1002/ejsp.263
Troccaz M, Starkenmann C, Niclass Y, van de Waal M, Clark AJ. ( 2004) 3-Methyl-3-sulfanylhexan-1-ol as a major descriptor for the human axilla-sweat odour profile.Chem Biodivers. 2004 Jul;1(7):1022-35. PMID: 17191896
Lenochová P, Vohnoutová P, Roberts SC, Oberzaucher E, Grammer K, Havlíček J (2012) Psychology of fragrance use: perception of individual odor and perfume blends reveals a mechanism for idiosyncratic effects on fragrance choice. (PMID:22470479) Free full text article PLoS One [2012, 7(3):e33810]
Barzantny H, Brune I, Tauch A. (2012) Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmet Sci. 2012 Feb;34(1):2-11. doi: 10.1111/j.1468-2494.2011.00669.x. Epub 2011 Jul 25. PMID: 21790661Fredrich E, Barzantny H, Brune I, & Tauch A (2013). Daily battle against body odor: towards the activity of the axillary microbiota. Trends in microbiology, 21 (6), 305-12 PMID: 23566668
Grice EA, & Segre JA (2012). The human microbiome: our second genome. Annual review of genomics and human genetics, 13, 151-70 PMID: 22703178
Stevenson, R., & Repacholi, B. (2005). Does the source of an interpersonal odour affect disgust? A disease risk model and its alternatives. European Journal of Social Psychology, 35 (3), 375-401 DOI: 10.1002/ejsp.263
Troccaz M, Starkenmann C, Niclass Y, van de Waal M, Clark AJ. ( 2004) 3-Methyl-3-sulfanylhexan-1-ol as a major descriptor for the human axilla-sweat odour profile.Chem Biodivers. 2004 Jul;1(7):1022-35. PMID: 17191896
Lenochová P, Vohnoutová P, Roberts SC, Oberzaucher E, Grammer K, Havlíček J (2012) Psychology of fragrance use: perception of individual odor and perfume blends reveals a mechanism for idiosyncratic effects on fragrance choice. (PMID:22470479) Free full text article PLoS One [2012, 7(3):e33810]
Labels:
Bacteria,
Body Odor,
Food,
microbes,
Musty odor,
Smell,
steroid hormones,
sulfur odor
Friday, June 28, 2013
I Know What You Ate This Summer
Despite active foodstagramming and foodteresting, and eagerness to show pictures of meals and diet reports to friends on social media, we don't really want others to know everything we eat. But they might know anyway.
Why worry about NSA, when Google, Facebook, Amazon and many others know what we might be eating. Cameras record our ways to groceries and restaurants, credit cards record our purchases, food chains know our weaknesses, clothes shops know how, as a result, our pant sizes change over time. One day phones will know what we ate too. As both short- and long-term diets change our breath-prints - creating signature metabolites in exhaled breath.
A recent Dutch study actually looked at what gluten-free eating does to our breath. Just 4 week of dieting lead to remarkable - though reversible - differences. (As detected in 20 healthy individuals by gas chromatography coupled with mass spectrometry (TD-GC-tof-MS) in combination with chemometric analysis ). A set of twelve volatile compounds that distinguish gluten-free eaters along with information from Aurametrix knowledgebase is listed in the table below.
Reference
Baranska A, Tigchelaar E, Smolinska A, Dallinga JW, Moonen EJ, Dekens JA, Wijmenga C, Zhernakova A, & van Schooten FJ (2013). Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. Journal of breath research, 7 (3) PMID: 23774130
Why worry about NSA, when Google, Facebook, Amazon and many others know what we might be eating. Cameras record our ways to groceries and restaurants, credit cards record our purchases, food chains know our weaknesses, clothes shops know how, as a result, our pant sizes change over time. One day phones will know what we ate too. As both short- and long-term diets change our breath-prints - creating signature metabolites in exhaled breath.
A recent Dutch study actually looked at what gluten-free eating does to our breath. Just 4 week of dieting lead to remarkable - though reversible - differences. (As detected in 20 healthy individuals by gas chromatography coupled with mass spectrometry (TD-GC-tof-MS) in combination with chemometric analysis ). A set of twelve volatile compounds that distinguish gluten-free eaters along with information from Aurametrix knowledgebase is listed in the table below.
Compound | Odor | Notes |
---|---|---|
2-butanol | strong alcoholic | 1-Butanol smells like permanent marker (Sharpie) |
octane | Gasoline-like, car exhaust | octyl chloride smells faintly of oranges |
2-propyl-1 pentanol | green banana | 1-Pentanol smells like paint thinner |
nonanal | strong fruity or floral | attracts mosquitoes |
dihydro-4-methyl-2(3H)-furanone | strong coconut aroma | 5-butyl-4-methyloxolan-2-one is known as "whisky lactone" |
nonanoic acid | rancid beer, old cooking oil | armpits of males over 30 |
dodecanal | Soapy, waxy, aldehydic, citrus, orange rindy with floral nuances | Pure, synthetic qualities of this fatty aldehyde are used in traces in perfumery for "fresh laundry"-like effects. |
Reference
Labels:
Breath,
breath test,
diet,
Food,
gluten-free,
Machine learning
Thursday, June 6, 2013
When it Smells Like Team Spirit
Why do we connect and collaborate, deciding to "walk in the light of creative altruism" instead of the "darkness of destructive selfishness"?
Is it because of subtle behavioral clues that make us "click" and consider the other person a part of the group? Or is it because it smells like team spirit?
It very well might be. We (literally) smell love, victory, fear, along with chemicals that motivate us to cooperate. As was recently shown in double-blind placebo-controlled studies that quantitatively measured generosity and cooperation. Androstadienone, a rather unpleasant smelling molecule abundant in male sweat could make us more cooperative and more likely to think of the other person as "one of us". This molecule, created from male sex hormone testosterone possibly with the help of coryneform bacteria living under arms, was previously shown to have an effect on women - depending on social context and the time in their menstrual cycle. Even though androstadienone does not smell particularly plaasant - rather musky, with subtle urine-like and alcohol notes - merely smelling it is sufficient to maintain high levels of energy-boosting hormone cortisol - possibly by inhibiting an enzyme (the 11β-hydroxysteroid dehydrogenase type 1 aka 11β-HSD1) responsible for its reactivation from cortisone.
Androstadienone is related to another steroid estratetraenol found in the urine of pregnant women. Both molecules in large concentrations can affect mood - improving it in females (also increasing their feeling of being focused and sensitivity to pain) while suppressing males. High testosterone males might even get depressed. So it might not be a good idea to sweat too much, but the right amount of sweating is actually helpful. If you are a male. When it comes to men deciding to cooperate with women, chemistry alone is less helpful. As in the old monkey experiment (Michael and Zumpe, 1982) where the best female strategy was to block male's access to other female monkeys. So, don't sweat it ladies. Just be dominant.
Is it because of subtle behavioral clues that make us "click" and consider the other person a part of the group? Or is it because it smells like team spirit?
It very well might be. We (literally) smell love, victory, fear, along with chemicals that motivate us to cooperate. As was recently shown in double-blind placebo-controlled studies that quantitatively measured generosity and cooperation. Androstadienone, a rather unpleasant smelling molecule abundant in male sweat could make us more cooperative and more likely to think of the other person as "one of us". This molecule, created from male sex hormone testosterone possibly with the help of coryneform bacteria living under arms, was previously shown to have an effect on women - depending on social context and the time in their menstrual cycle. Even though androstadienone does not smell particularly plaasant - rather musky, with subtle urine-like and alcohol notes - merely smelling it is sufficient to maintain high levels of energy-boosting hormone cortisol - possibly by inhibiting an enzyme (the 11β-hydroxysteroid dehydrogenase type 1 aka 11β-HSD1) responsible for its reactivation from cortisone.
Androstadienone |
Androstadienone is related to another steroid estratetraenol found in the urine of pregnant women. Both molecules in large concentrations can affect mood - improving it in females (also increasing their feeling of being focused and sensitivity to pain) while suppressing males. High testosterone males might even get depressed. So it might not be a good idea to sweat too much, but the right amount of sweating is actually helpful. If you are a male. When it comes to men deciding to cooperate with women, chemistry alone is less helpful. As in the old monkey experiment (Michael and Zumpe, 1982) where the best female strategy was to block male's access to other female monkeys. So, don't sweat it ladies. Just be dominant.
REFERENCES
Huoviala P, & Rantala MJ (2013). A Putative Human Pheromone, Androstadienone, Increases Cooperation between Men. PloS one, 8 (5) PMID: 23717389
Lundström JN, Hummel T, & Olsson MJ (2003). Individual differences in sensitivity to the odor of 4,16-androstadien-3-one. Chemical senses, 28 (7), 643-50 PMID: 14578126
Michael RP, Zumpe D. (1982) Influence of olfactory signals on the reproductive behaviour of social groups of rhesus monkeys (Macaca mulatta). J Endocrinol. 95(2):189-205. PMID: 7175415
Labels:
Androstadienone,
collaboration,
Estratetraenol,
Pheromone,
Smell,
steroid hormones,
Sweat
Wednesday, May 1, 2013
Inhale and feel it with your heart
All you need is love. Or failing that chocolate.
And not only because dark chocolate could lower the risk of heart disease, blood pressure and sugar levels. As Dr. Schieberle's team recently discovered that heart could sense and enjoy the sweet smell of chocolate too. When they put small odor-emitting molecules from chocolate on one side of a dish, cells actually moved towards the aroma.
The heart, the lungs, the blood, the sperm and testis all have the abilities to recognize chemicals responsible for smells. Genomic studies (Deldmesser et al, 2006) showed that many tissues have working genes responsible for the perception of flavors. Sperm of sea urchines is able to recognize the odor and swim toward the egg. Human sperm might very well be capable of "smelling" their way to the egg too. And white blood cells sense the odors of bacteria to rush to the site of infection in the wound. Unfortunately, cancer cells can also sense their way out of the tumor in the direction of blood vessels, leading to metastasis. Smells can guide social preferences, trigger positive or negative memories, help to lose weight, reduce anxiety or give you nightmares. Smells can make or brake, kill or heal. They can have therapeutic or diagnostic use helping to understand gene-environment health paradigms and paving new avenues for future health care strategies.
REFERENCES
Feldmesser E, Olender T, Khen M, Yanai I, Ophir R, & Lancet D (2006). Widespread ectopic expression of olfactory receptor genes. BMC genomics, 7 PMID: 16716209
Schieberle P, & Molyneux RJ (2012). Quantitation of sensory-active and bioactive constituents of food: A Journal of Agricultural and Food Chemistry perspective. Journal of agricultural and food chemistry, 60 (10), 2404-8 PMID: 22369090
Schieberle P., Do cells in the blood, heart and lungs smell the food we eat? 245th Chemistry of Energy and Food, National Meeting & Exposition of the American Chemical Society, New Orleans, LA, April 7-11, 2013
And not only because dark chocolate could lower the risk of heart disease, blood pressure and sugar levels. As Dr. Schieberle's team recently discovered that heart could sense and enjoy the sweet smell of chocolate too. When they put small odor-emitting molecules from chocolate on one side of a dish, cells actually moved towards the aroma.
The heart, the lungs, the blood, the sperm and testis all have the abilities to recognize chemicals responsible for smells. Genomic studies (Deldmesser et al, 2006) showed that many tissues have working genes responsible for the perception of flavors. Sperm of sea urchines is able to recognize the odor and swim toward the egg. Human sperm might very well be capable of "smelling" their way to the egg too. And white blood cells sense the odors of bacteria to rush to the site of infection in the wound. Unfortunately, cancer cells can also sense their way out of the tumor in the direction of blood vessels, leading to metastasis. Smells can guide social preferences, trigger positive or negative memories, help to lose weight, reduce anxiety or give you nightmares. Smells can make or brake, kill or heal. They can have therapeutic or diagnostic use helping to understand gene-environment health paradigms and paving new avenues for future health care strategies.
REFERENCES
Feldmesser E, Olender T, Khen M, Yanai I, Ophir R, & Lancet D (2006). Widespread ectopic expression of olfactory receptor genes. BMC genomics, 7 PMID: 16716209
Schieberle P, & Molyneux RJ (2012). Quantitation of sensory-active and bioactive constituents of food: A Journal of Agricultural and Food Chemistry perspective. Journal of agricultural and food chemistry, 60 (10), 2404-8 PMID: 22369090
Schieberle P., Do cells in the blood, heart and lungs smell the food we eat? 245th Chemistry of Energy and Food, National Meeting & Exposition of the American Chemical Society, New Orleans, LA, April 7-11, 2013
Labels:
chocolate,
health analysis,
heart,
Olfaction,
VOCs,
Volatile Compounds
Subscribe to:
Posts (Atom)