Showing posts with label sulfur odor. Show all posts
Showing posts with label sulfur odor. Show all posts

Saturday, September 7, 2013

Body Odor and Skin Bacteria

Our bodies are rainforests of microbes feeding off the leftovers from our meals and contributing to a variety of body odors. 

Human skin is inhabited and re-populated depending on health conditions, age, genetics, diet, the weather and climate zones, occupations, cosmetics, soaps, hygienic products and moisturizers. All these factors contribute to the variation in the types of microbes. Population of viruses, for example, can include a mixture of good ones - like bacteriophages fighting acne-causing Propionibacterium  - and bad ones  - as highly contagious Mesles. Bacterial communities include thousands of species of Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, and fungi Malassezia.
Nat Rev Microbiol. 2011 April; 9(4): 244–253.
Nat Rev Microbiol. 2011 April; 9(4): 244–253.
These microbes form communities and have active social lives, cooperating to our good and bad experiences. They converse chemically - in many specific dialects and in universal Esperanto-like languages some of which even we could listen to  - by sampling and understanding smells. 
Humans are among the smelliest animals. And very capable in telling smells apart,  even if the only difference in two molecules is that their structures are mirror images of one another. But unlike dogs that appreciate a garbage bin as much as we appreciate the smell of fresh flowers, we don't properly interpret smells and like to complain about body odors. As we don't know all that much about chemical nature of our surroundings and rely on context and psychological factors, like feeling an intrusion in our experiences of the world. 

Maybe we have something to learn from the science of smells? 

In  a recent review of axillary microbiota, German researchers gave a good lesson in organic chemistry, listing major chemicals, enzymes and microbes responsible for body odor. Let's take a look. 

As was also shown in previous studies, Staphylococcus and Corynebacterium spp. are the most abundant organisms colonizing moist areas and emitting chicken-sulfury, onion-like and clary-sage like odors. The strain of Staphylococcus haemolyticus is producing some of the most offensive sulfury smells. Corynebacterium jeikeium K411 is another species that can compete on the strength of the odor. 

The major odor-causing substances are sulphanyl alkanols, steroid derivatives and short volatile branched-chain fatty acids. 

Most common sulphanyl alkanol in human sweat, 3-methyl-3-sulfanylhexan-1-ol is produced by bacteria in several ways, particularly in glutathione biodetoxification pathway, from molecules synthesized after consuming proteins (due to aminoacids L-cysteine, L-glutamic acid and glycin). This chemical,  besides being a major descriptor of human sweat odor,  is also present in beers. Its S-enantiomer (75%) is described as a classical body odor (sweat) with onion-like tones. Interestingly, the opposite enantiomer, (R)-3-methyl-3-sulfanylhexan-1-ol, is fruity and grapefruit-like. 

Another set of molecules produced by Corinebacterium are most prominent in Caucasian men and some Asians. The odor is hircine - resembling of goats with fatty and cheesy notes or cumin-spice like. The food sources contributing to this odor are proteins and animal fats. 

Pheromones androstenol and androstenone, metabolites of sexual hormones, are also odorous. The latter is especially interesting as to some of us it smells like vanilla while to others is smells like urine.

Sweaty-feet and cheesy smelling isovaleric and propionic acids and sour-vinegary acetic acid are also adding to the spectrum of human odors.  They can smell different to different people too - some people have genetic makeup making them hypersensitive to these smells, but others are much more tolerant and forgiving. The food sources of sourish smells are protein-rich. Lactic acid is found in cheeses, yogurt, soy sauce, sourdough, meats and pickled vegetables. It can be also produced from the breakdown of carbohydrates during exercise and used as additional fuel. Glycerol is created from triglycerides found in fats and oils.  


So next time you are exposed to body odor, try to understand what could be causing it. It is not easy as it is a combination of many factors such as hormonal fluctuations, mental or physical stress, metabolism and microbes. It could be perfectly normal or result from a medical condition of the person who has the smell and your own olfactory abilities. But the smells are fascinating clues to health and  the basics can be learned by most everyone.
REFERENCES

Fredrich E, Barzantny H, Brune I, & Tauch A (2013). Daily battle against body odor: towards the activity of the axillary microbiota. Trends in microbiology, 21 (6), 305-12 PMID: 23566668

Grice EA, & Segre JA (2012). The human microbiome: our second genome. Annual review of genomics and human genetics, 13, 151-70 PMID: 22703178

Stevenson, R., & Repacholi, B. (2005). Does the source of an interpersonal odour affect disgust? A disease risk model and its alternatives. European Journal of Social Psychology, 35 (3), 375-401 DOI: 10.1002/ejsp.263

Troccaz M, Starkenmann C, Niclass Y, van de Waal M, Clark AJ.  ( 2004) 3-Methyl-3-sulfanylhexan-1-ol as a major descriptor for the human axilla-sweat odour profile.Chem Biodivers. 2004 Jul;1(7):1022-35. PMID: 17191896

Lenochová P, Vohnoutová P, Roberts SC, Oberzaucher E, Grammer K, Havlíček J (2012) Psychology of fragrance use: perception of individual odor and perfume blends reveals a mechanism for idiosyncratic effects on fragrance choice. (PMID:22470479) Free full text article  PLoS One [2012, 7(3):e33810]
Barzantny H, Brune I, Tauch A. (2012) Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmet Sci. 2012 Feb;34(1):2-11. doi: 10.1111/j.1468-2494.2011.00669.x. Epub 2011 Jul 25.  PMID: 21790661

Thursday, January 31, 2013

Odors and Infections

Many illnesses are associated with distinct odors. Especially those caused by infectious or opportunistic microbes inside the body or on its surfaces.  Body odor of someone infected with C. difficile, for example, can appear "swampy", Rotavirus gives sharply sweet putrid smell that some people associate with wet dogs. H. pylori can create a range of foul odors, and pseudomonas infections can smell like grapes and bitter almonds

Infections like C. difficile are usually linked to a general imbalance of the intestinal microbiota, often referred to as dysbiosis. This means that the odors could be coming from several microbial species, hence could be different for different individuals. Does it mean odor-based diagnostics will never be enough specific?

Not according to a 2-year-old beagle from Netherland, named Cliff. After just a little over two months of training, the beagle learned to identify the C. diff toxin by sniffing people or their samples. During one test, he was able to identify 25 out of 30 infected patients and 265 of 270 non-infected individuals. He also correctly identified 50 of 50 C. diff positive stool samples and 47 of 50 samples from people that did not have this infection. That's sensitivity of 100% for samples and 83-93% for sniffing the air around the patients, and a specificity of 94-100%! And it took him less than 10 minutes to accurately perform 300 diagnostic tests.  

Dogs already do the dirty work with detecting molds. They can examine an office building with 200 rooms in just 8 hours, a task that would take us several days of measuring  moisture, probably without any result. Electronic noses would be of great help and many years of research are finally being translated into useful technologies - to be integrated with refrigerators and mobile phones. But until we are able to build smart devices to detect odors without labor-intensive dog training, perhaps we could train our own nozzles. Studies have shown we do get better with practice. 


REFERENCES

Bomers MK, van Agtmael MA, Luik H, van Veen MC, Vandenbroucke-Grauls CM, & Smulders YM (2012). Using a dog's superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study. BMJ (Clinical research ed.), 345 PMID: 23241268

Poulton J, Tarlow MJ. (1987) Diagnosis of rotavirus gastroenteritis by smell. Arch Dis Child. 1987 Aug;62(8):851-2. PMID: 3662595

Arnaud Tognetti, Megan N Williams, Nathalie Lybert, Mats Lekander, John Axelsson, Mats J Olsson, Humans can detect axillary odor cues of an acute respiratory infection in others, Evolution, Medicine, and Public Health, Volume 11, Issue 1, 2023, Pages 219–228, https://doi.org/10.1093/emph/eoad016