Tuesday, December 31, 2024

Sniffing Out Stress: Odor Profiling as a Tool for Health Monitoring

Recent research paper highlights the potential of manure odor profiling as a non-invasive tool for monitoring stress and intestinal health in poultry flocks. Using advanced gas chromatography-mass spectrometry, scientists analyzed volatile compounds in manure from layer pullets undergoing routine vaccinations, such as Salmonella and viral/bacterial vaccine cocktails. These vaccinations served as model stressors.  

Key findings include:

  • Age Matters: Young and older pullets displayed distinct volatile profiles. Compounds like beta-camphor and (Z)-6-Tridecene were elevated in younger birds, while carbonyl sulfide and trimethylamine dominated in older ones.
  • Vaccine Impact: The Salmonella vaccine elicited the most consistent changes in manure volatiles, particularly in younger birds, while the viral/bacterial cocktail caused more pronounced shifts in older birds.
  • Consistency: Despite differences in age, housing, and vaccine type, reductions in certain volatile intensities (e.g., (Z)-6-Tridecene) were observed in three of four flocks post-vaccination.

This approach could pave the way for precision livestock farming, offering an objective means of monitoring flock-level responses to stressors and intestinal health challenges.

Interestingly, trimethylamine (TMA)—a volatile compound detected in older pullets—plays a significant role in both poultry manure profiling and human health. Recent research identified the bacterium JAGTTR01 sp018223385 as a key player in producing TMA from L-carnitine in the human gut. Elevated TMA levels, when metabolized into trimethylamine N-oxide (TMAO), are linked to cardiovascular risks.

The overlap underscores the broader potential of olfactory diagnostics in understanding microbial activity and health impacts across species. Whether in poultry farms or human health, volatile profiling reveals a fascinating connection between microbial metabolism, diet, and well-being.


REFERENCES

van Veen LA, van den Brand H, van den Oever ACM, Kemp B, Meisenburg M. Manure odor profiling for flock-level monitoring on commercial layer pullet farms: Vaccination events as a model stressor. Poult Sci. 2024 Dec 16;104(2):104681. doi: 10.1016/j.psj.2024.104681. Epub ahead of print. PMID: 39721281.

Wu WK, Lo YL, Chiu JY, Hsu CL, Lo IH, Panyod S, Liao YC, Chiu THT, Yang YT, Kuo HC, Zou HB, Chen YH, Chuang HL, Yen JJY, Wang JT, Chiu HM, Hsu CC, Kuo CH, Sheen LY, Kao HL, Wu MS. Gut microbes with the gbu genes determine TMAO production from L-carnitine intake and serve as a biomarker for precision nutrition. Gut Microbes. 2025 Dec;17(1):2446374. doi: 10.1080/19490976.2024.2446374. Epub 2024 Dec 26. PMID: 39722590.

Saturday, April 13, 2024

Exhale The Difference: Propylene Oxide as a Game-Changer in Identifying Idiopathic Malodor Conditions

A new study posted on MedrXiv sheds light on the potential of breath analysis as a powerful, non-invasive diagnostic tool for Trimethylaminuria (TMAU) and TMAU-like conditions. One of the most interesting observations is the detection of Propylene Oxide in exhaled breath suggesting its delayed elimination and offering a promising marker for misunderstood and underdiagnosed conditions.

TMAU-like (yet negative to choline-challenge-based test) and "People Are Allergic To Me" (PATM) conditions, characterized by the emission of odorous or irritating Volatile Organic Compounds (VOCs), have long challenged the medical community due to the lack of non-challenge-based diagnostic procedures.

Using advanced gas chromatography-mass spectrometry, researchers analyzed the breath of 23 individuals exhibiting TMAU-like symptoms. They discovered that Propylene Oxide, alongside other VOCs, some of which were previously associated with PATM, can effectively discriminate between individuals who have tested positive for TMAU at some point and those who have not. This method demonstrated impressive accuracy, precision, and recall rates, making it a potential cornerstone for future diagnostic strategies.

Propylene Oxide's presence in breath samples particularly stood out in the study. This compound was more abundant in individuals that never tested positive for TMAU, potentially pointing to unique metabolic processes or environmental interactions that could be pivotal in understanding and managing TMAU-like conditions.

Propylene Oxide (PO) is a prevalent chemical found not only on Earth, owing to its widespread use in industrial and consumer applications, but also in the Milky Way. It leaves more significant marks on the human body than previously thought. Mass production contributes to its omnipresence, and exposure can occur through various sources such as cellulose acetate film, wood shavings, and paper cups. Despite efforts to eliminate gas residues, accidental exposure still occurs, particularly among workers involved in sterilization processes. Additionally, foods treated with PO as a fumigant may contain residues of the chemical.

PO has been detected in human breath following exposure to Propylene (PE), a combustion product found in forest fires, cigarette smoke, and vehicle exhaust. Indoor exposure is typically higher than outdoors due to residential activities like cooking, and urban areas tend to have higher concentrations than rural regions. Workers in specific industries may face elevated exposure levels, such as firefighters and refinery plant operators. PEG in cosmetic products can also be contaminated with propylene oxide. Furthermore, Propylene Glycol (PG) in cigarettes and e-liquids can be converted to PO, contributing to exposure.

Other compounds mentioned in the paper were markers of oxidative stress Hydroperoxide, hexyl; Hexanal; Decane, 2-methyl-; Tetradecane; Decane, 2,6,6-trimethyl- and D-limonene2,2,3-trimethylnonane was one of compounds associated with breath odor. 

This research emphasizes the need for personalized diagnostic approaches, considering the significant variability in VOCs among individuals. Such tailored strategies could lead to more accurate diagnoses and better management of conditions that currently lack specific treatments.




REFERENCES

Irene S. Gabashvili 2024 Propylene Oxide in Exhaled Breath as a Marker for Discriminating TMAU-like Conditions from TMAU medRxiv 2024.04.11.24305677; doi: https://doi.org/10.1101/2024.04.11.24305677

Irene S. Gabashvili 2024 Biological Factors Influencing Individual Responses to Propylene Oxide: A Systematic Review of Exogenous Exposure, Endogenous Production and Detoxification
medRxiv 2024.02.15.24302622; doi: https://doi.org/10.1101/2024.02.15.24302622

Sunday, January 21, 2024

The Invisible Language of Nature

Chemical communication, an invisible yet powerful dialogue within the natural world, plays a crucial role in the interactions between different species. One fascinating aspect of this is the concept of kairomones, chemicals emitted by one species that beneficially affect another, often at the emitter's expense. Unlike pheromones, which influence the same species, kairomones involve cross-species interactions. 

Kairomones are a subtle yet potent force in nature's complex web. For example, human kairomones can significantly influence mosquito behavior. When humans exhale, they release carbon dioxide, L-(+)-lactic acid, and ammonia, unwittingly signaling their presence to mosquitoes. This chemical signal is a dinner bell for these insects, guiding them to their next blood meal. This interaction, while advantageous for the mosquito, is a clear disadvantage for humans, particularly considering the role mosquitoes play in transmitting diseases.

The study of human kairomones opens a window into understanding and potentially controlling mosquito populations. A recent study highlighted the potential of geraniol in reducing mosquito attraction by 69-78% to a mixture of key human kairomones like carbon dioxide, L-(+)-lactic acid, and ammonia.

This chemical dialogue extends beyond animals to the plant kingdom. Plants, though lacking a nervous system or traditional senses, have their own form of communication, often mediated by chemicals. For instance, when a plant is under attack, it can release volatile compounds to attract predators of the herbivores harming it. Interestingly, these chemicals can also alert nearby plants of potential danger.

A case study involving sagebrush and wild tobacco plants provides insight into this phenomenon. When sagebrush is damaged, it releases methyl jasmonate, a volatile compound that nearby tobacco plants detect, triggering an increase in their production of defensive agents. This chemical warning system, however, seems to have a very limited range.

The study of chemical communication in nature, whether between humans and mosquitoes or among plants, is an ongoing journey of discovery. It reveals the intricate and often hidden ways in which life on Earth interacts and adapts. As research continues, we may find more innovative ways to apply this knowledge, from controlling pests to understanding ecosystem dynamics.

Chemical communication remains a fascinating and largely uncharted frontier, offering a glimpse into the sophisticated and silent language of nature.






REFERENCES 

Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. Sci Rep. 2024 Jan 18;14(1):1631. doi: 10.1038/s41598-023-50182-5. PMID: 38238397; PMCID: PMC10796395.

Karban R, Shiojiri K, Huntzinger M, McCall AC. Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology. 2006 Apr;87(4):922-30. doi: 10.1890/0012-9658(2006)87[922:drisva]2.0.co;2. PMID: 16676536.

Chemical & Engineering News: Critter Chemistry - Plants to Bugs: Buzz Off! (acs.org) by Sophie Wilkinson, Chemical & Engineering News, American Chemical Society

The short film "Descendants" provides a creative exploration of nature's interconnectedness: http://vimeo.com/8642276

https://entomology.ucdavis.edu/people/richard-karban
https://swissplantscienceweb.unibas.ch/en/farmer/
https://www.ice.mpg.de/person/111845