Monday, November 13, 2023

Rare Diseases in the Era of High-Cost Drug Development

We are currently witnessing a remarkable era in medical innovation, marked by rapid advancements and transformative developments. Yet the medical community is often unable to tell what works and what doesn’t. As the complexity of medical treatments increases, the importance of distinguishing reliable therapies from ineffective ones becomes ever more crucial. In this context, robust data collection and sophisticated analysis are indispensable tools.
In recent years, the trend in clinical trials has shifted towards smaller studies focusing on diseases that either attract substantial health insurance reimbursements or predominantly affect affluent populations. This shift is largely driven by the expectation of high drug prices post-development. However, this leaves a significant gap in research and treatment for conditions like Metabolic Body Odor (MEBO) and "People are allergic to me" (PATM). These conditions disproportionately impact individuals who may find it challenging to achieve financial security due to the nature of their ailments.

In 2008, a community survey by pharmacist Arun Nagrath highlighted a lack of confidence in medical advice among patients. Fast forward to the present, and while medical practitioners may exhibit greater confidence, their assurance is not always underpinned by evidence. This is evident in the prescription of costly tests, which clinicians may struggle to interpret or follow up effectively.

The landscape of self-treatment is continuously evolving. Popular remedies change over time, and the effectiveness of these treatments varies widely. In 2008, probiotics and Chlorophyl/Copper Chlorophyllin products were at the forefront. However, some patients reported that their odor issues worsened after using these remedies (as indicated by the red area in the corresponding pie chart, compared to green for effectiveness and gray for uncertainty). Many patients found that perfumed products exacerbated their condition, including about half of reported deodorants, though the other half was suitable types. Remedies once popular, like Mushroom extracts such as ProM and Champex, Activated Charcoal, Baking Soda and Hydrogen Peroxide have faded from the discussion. Vitamin B2, although used by fewer than a quarter of respondents in 2008 and found effective by some, remains a favored treatment. Oldenlandia and Coconut oil were found useful by small fraction of respondents. Somebody even used Bleach to clean themselves and found it to make things worse.  Interestingly, certain drugs intended for other conditions were reported to have secondary effects on odor – beneficial in cases like Prilosec and Probathine, and detrimental with Anxiolytics, Antidepressants, and Antivirals, the latter aligning with recent findings related to the COVID-19 vaccine. Antifungals were used by a few and were never found to worsen condition. Neither did Folic acid, Zinc, Calcium and Magnesium.  There were cases when digestive enzymes, contraceptives, and baking soda treatments made things worse. 

Interest in resveratrol, a compound present in red wine, reached its zenith in the late 2000s and early 2010s. During this period, the MEBO community extensively used and promoted this compound. In the mid-2010s, DMB became a focal point of discussion for many, while Fluxovas entered the scene and began to be mentioned starting in 2020.

While the popularity of probiotics endures, there is a noticeable shift towards personalization. Individuals are increasingly acknowledging the significance of identifying probiotic strains that harmonize with their unique physiology and health objectives. Our microbiome study unveiled that individuals with higher cutaneous bacteria (and total bacteria) abundances in the gut benefited from reducing microbial diversity and overall bacterial counts. In contrast, those with lower abundances found advantages in increasing microbial diversity. This highlights the absence of a universal solution for probiotics.

This evolving self-treatment scenario emphasizes the pivotal role of precision medicine, considering individual genetic, environmental, and lifestyle influences for disease treatment and prevention. Conditions like TMAU, MEBO, and PATM, lacking standardized effective treatments, emphasize the pressing need for more nuanced and targeted approaches.
Precision medicine, gaining popularity, particularly in tandem with Artificial Intelligence approaches this year, marks a departure from one-size-fits-all strategies. It relies extensively on data, specifically genomic, microbiome, and metabolomic data, to tailor treatments to individual patient needs. This patient-centric approach promises to revolutionize treatment strategies, especially for those with previously under-researched and underserved medical conditions.

MEBO's causes remain largely unknown, and without clear diagnostic criteria, it is often referred to as idiopathic malodor. This uncertainty mirrors the earlier challenges in diagnosing conditions like IBS, which was once seen as a diagnosis of exclusion. Today, the importance of ruling out other diagnoses through tests is recognized.

MEBO is a poignant example of a rare condition that can severely impact an individual's ability to pursue a career and achieve financial success. This condition is not only socially debilitating but also lacks effective diagnostic and treatment options. Diagnostic studies for such rare conditions are prohibitively expensive, and the lack of effective therapies exacerbates the problem. Moreover, the large heterogeneity within the patient population makes finding a one-size-fits-all solution particularly challenging.

So, what should be done in this scenario? First and foremost, there's a need for increased funding and research attention towards rare diseases like MEBO. This could be facilitated by incentivizing pharmaceutical companies through tax breaks or grants to undertake research in less profitable but socially significant areas.

Secondly, fostering collaborations between research institutions, pharmaceutical companies, and patient advocacy groups can create a more holistic approach to understanding and treating these conditions. Such collaborations can also help in the collection of more comprehensive and diverse data, and better ways to collect itwhich is crucial given the heterogeneity of conditions like MEBO. 

Thirdly, the role of government and healthcare policymakers is critical. They can implement policies that encourage research and development in neglected areas, ensuring that the healthcare system is inclusive and caters to all, regardless of the financial implications or rarity of the condition.

Lastly, leveraging technology and innovation in medical research can also provide new avenues for diagnosis and treatment. For example, artificial intelligence and machine learning could be used to better understand complex conditions like MEBO, potentially leading to more effective and personalized treatments.

So far there’s never been any real emphasis on making clinical trials better or easier to conduct. Our goal, as a society, seems to be to manufacture more and more sports cars and to drive them faster and faster into the mud.

We hope that the healthcare industry and policymakers work together to ensure that all patients, regardless of their financial status or the rarity of their condition, have access to the treatments they need.

REFERENCES



Gabashvili IS. The Incidence and Effect of Adverse Events Due to COVID-19 Vaccines on Breakthrough Infections: Decentralized Observational Study With Underrepresented Groups. JMIR Form Res. 2022 Nov 4;6(11):e41914. doi: 10.2196/41914. PMID: 36309347; PMCID: PMC9640199.

Gabashvili IS. Cutaneous bacteria in the gut microbiome as biomarkers of systemic malodor and People Are Allergic to Me (PATM) conditions: insights from a virtually conducted clinical trial. JMIR Dermatol. 2020 Nov 4;3(1):e10508. doi: 10.2196/10508. https://derma.jmir.org/2020/1/e10508/ 

Gabashvili IS. Artificial Intelligence in Biomedicine: Systematic Review
medRxiv 2023.07.23.23292672; doi: https://doi.org/10.1101/2023.07.23.23292672

No comments:

Post a Comment